

 Navigation

 	
 index

 	
 next |

 	django-secure 0.1.1 documentation

django-secure

Helping you remember to do the stupid little things to improve your Django
site’s security.

Inspired by Mozilla’s Secure Coding Guidelines [https://wiki.mozilla.org/WebAppSec/Secure_Coding_Guidelines], and intended for sites that
are entirely or mostly served over SSL (which should include anything with
user logins).

Quickstart

Dependencies

Tested with Django [http://www.djangoproject.com/] 1.2 through trunk, and Python [http://www.python.org/] 2.5 through 2.7. Quite
likely works with older versions of both, though; it’s not very complicated.

Installation

Install from PyPI with pip:

pip install django-secure

or get the in-development version [https://github.com/carljm/django-secure/tarball/master#egg=django_secure-dev]:

pip install django-secure==dev

Usage

	Add "djangosecure" to your INSTALLED_APPS setting.

	Add "djangosecure.middleware.SecurityMiddleware" to your
MIDDLEWARE_CLASSES setting (where depends on your other middlewares, but
near the beginning of the list is probably a good choice).

	Set the SECURE_SSL_REDIRECT setting to True if all non-SSL requests
should be permanently redirected to SSL.

	Set the SECURE_HSTS_SECONDS setting to an integer number of seconds, if
you want to use HTTP Strict Transport Security [http://en.wikipedia.org/wiki/Strict_Transport_Security].

	Set the SECURE_FRAME_DENY setting to True, if you want to prevent
framing of your pages and protect them from clickjacking [http://www.sectheory.com/clickjacking.htm].

	Set the SECURE_CONTENT_TYPE_NOSNIFF setting to True, if you want to prevent
the browser from guessing asset content types.

	Set SESSION_COOKIE_SECURE and SESSION_COOKIE_HTTPONLY to True if
you are using django.contrib.sessions. These settings are not part of
django-secure, but they should be used if running a secure site, and the
checksecure management command will check their values.

	Run python manage.py checksecure to verify that your settings are
properly configured for serving a secure SSL site.

Warning

If checksecure gives you the all-clear, all it means is that you’re now
taking advantage of a tiny selection of simple and easy security
wins. That’s great, but it doesn’t mean your site or your codebase is
secure: only a competent security audit can tell you that.

The Details

	Design Goals

	SecurityMiddleware
	X-Frame-Options: DENY

	HTTP Strict Transport Security

	X-Content-Type-Options: nosniff

	SSL Redirect

	The checksecure management command
	When to run it

	Built-in checks

	Modifying the list of check functions

	Writing custom check functions

	Settings Reference
	SECURE_CHECKS

	SECURE_FRAME_DENY

	SECURE_HSTS_SECONDS

	SECURE_CONTENT_TYPE_NOSNIFF

	SECURE_PROXY_SSL_HEADER

	SECURE_REDIRECT_EXEMPT

	SECURE_SSL_HOST

	SECURE_SSL_REDIRECT

	CHANGES
	0.1.1 (2011.11.23)

	0.1.0 (2011.05.29)

	TODO

	Contributors

Indices and tables

	Index

	Module Index

	Search Page

 Copyright 2011, Carl Meyer.
 Created using Sphinx 1.1.3.

 TEST Brought to you by Read the Docs

 	latest

 	v0.1.2

 	v0.1.1

 	v0.1.0

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	django-secure 0.1.1 documentation

Design Goals

Django-secure does not make your site secure. It does not audit code, or do
intrusion detection, or really do anything particularly interesting or
complicated.

Django-secure is an automated low-hanging-fruit checklist. Django-secure helps
you remember the stupid simple things that improve your site’s security,
reminds you to do those easy things, and makes them as easy as possible to do.

 Copyright 2011, Carl Meyer.
 Created using Sphinx 1.1.3.

 TEST Brought to you by Read the Docs

 	latest

 	v0.1.2

 	v0.1.1

 	v0.1.0

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	django-secure 0.1.1 documentation

SecurityMiddleware

The djangosecure.middleware.SecurityMiddleware performs three different
tasks for you. Each one can be independently enabled or disabled with a
setting.

	X-Frame-Options: DENY

	HTTP Strict Transport Security

	X-Content-Type-Options: nosniff

	SSL Redirect

X-Frame-Options: DENY

Clickjacking [http://www.sectheory.com/clickjacking.htm] attacks use layered frames to mislead users into clicking on a
different link from the one they think they are clicking on. Fortunately, newer
browsers support an X-Frame-Options header that allows you to limit or
prevent the display of your pages within a frame. Valid options are “DENY” or
“SAMEORIGIN” - the former prevents all framing of your site, and the latter
allows only sites within the same domain to frame.

Unless you have a need for frames, your best bet is to set “X-Frame-Options:
DENY” – and this is what SecurityMiddleware will do for all responses, if
the SECURE_FRAME_DENY setting is True.

If you have a few pages that should be frame-able, you can set the
“X-Frame-Options” header on the response to “SAMEORIGIN” in the view;
SecurityMiddleware will not override an already-present “X-Frame-Options”
header. If you don’t want the “X-Frame-Options” header on this view’s response
at all, decorate the view with the frame_deny_exempt decorator:

from djangosecure.decorators import frame_deny_exempt

@frame_deny_exempt
def my_view(request):
 # ...

HTTP Strict Transport Security

For sites that should only be accessed over HTTPS, you can instruct newer
browsers to refuse to connect to your domain name via an insecure connection
(for a given period of time) by setting the “Strict-Transport-Security”
header [http://en.wikipedia.org/wiki/Strict_Transport_Security]. This reduces your exposure to some SSL-stripping man-in-the-middle
(MITM) attacks.

SecurityMiddleware will set this header for you on all HTTPS responses if
you set the SECURE_HSTS_SECONDS setting to a nonzero integer value.

Warning

The HSTS policy applies to your entire domain, not just the URL of the
response that you set the header on. Therefore, you should only use it if
your entire domain is served via HTTPS only.

Warning

Browsers properly respecting the HSTS header will refuse to allow users to
bypass warnings and connect to a site with an expired, self-signed, or
otherwise invalid SSL certificate. If you use HSTS, make sure your
certificates are in good shape and stay that way!

Note

If you are deployed behind a load-balancer or reverse-proxy server, and the
Strict-Transport-Security header is not being added to your responses, it
may be because Django doesn’t realize when it’s on a secure connection; you
may need to set the SECURE_PROXY_SSL_HEADER setting.

X-Content-Type-Options: nosniff

Some browsers will try to guess the content types of the assets that they
fetch, overriding the Content-Type header. While this can help display
sites with improperly configured servers, it can also pose a security
risk.

If your site serves user-uploaded files, a malicious user could upload a
specially-crafted file that would be interpreted as HTML or Javascript by
the browser when you expected it to be something harmless.

To learn more about this header and how the browser treats it, you can
read about it on the IE Security Blog [http://blogs.msdn.com/b/ie/archive/2008/09/02/ie8-security-part-vi-beta-2-update.aspx].

To prevent the browser from guessing the content type, and force it to
always use the type provided in the Content-Type header, you can pass
the X-Content-Type-Options: nosniff header. SecurityMiddleware will
do this for all responses if the SECURE_CONTENT_TYPE_NOSNIFF setting
is True.

SSL Redirect

If your site offers both HTTP and HTTPS connections, most users will end up
with an unsecured connection by default. For best security, you should redirect
all HTTP connections to HTTPS.

If you set the SECURE_SSL_REDIRECT setting to True,
SecurityMiddleware will permanently (HTTP 301) redirect all HTTP
connections to HTTPS.

Note

For performance reasons, it’s preferable to do these redirects outside of
Django, in a front-end loadbalancer or reverse-proxy server such as
nginx [http://nginx.org]. In some deployment situations this isn’t an option -
SECURE_SSL_REDIRECT is intended for those cases.

If the SECURE_SSL_HOST setting has a value, all redirects will be sent
to that host instead of the originally-requested host.

If there are a few pages on your site that should be available over HTTP, and
not redirected to HTTPS, you can list regular expressions to match those URLs
in the SECURE_REDIRECT_EXEMPT setting.

Note

If you are deployed behind a load-balancer or reverse-proxy server, and
Django can’t seem to tell when a request actually is already secure, you
may need to set the SECURE_PROXY_SSL_HEADER setting.

 Copyright 2011, Carl Meyer.
 Created using Sphinx 1.1.3.

 TEST Brought to you by Read the Docs

 	latest

 	v0.1.2

 	v0.1.1

 	v0.1.0

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	django-secure 0.1.1 documentation

The checksecure management command

The checksecure management command is a “linter” for simple improvements
you could make to your site’s security configuration. It just runs a list of
check functions. Each check function can return a set of warnings, or the
empty set if it finds nothing to warn about.

	When to run it

	Built-in checks

	Modifying the list of check functions

	Writing custom check functions

When to run it

You can run it in your local development checkout. Your local dev settings
module may not be configured for SSL, so you may want to point it at a
different settings module, either by setting the DJANGO_SETTINGS_MODULE
environment variable, or by passing the --settings option:

django-admin.py checksecure --settings=production_settings

Or you could run it directly on a production or staging deployment to verify that the correct settings are in use.

You could even make it part of your integration test suite, if you want. The
djangosecure.check.run_checks() function runs all configured checks
and returns the complete set of warnings; you could write a simple test that
asserts that the returned value is empty.

Built-in checks

The following check functions are built-in to django-secure, and will run by
default:

	
djangosecure.check.djangosecure.check_security_middleware()

	Warns if SecurityMiddleware is not in your MIDDLEWARE_CLASSES.

	
djangosecure.check.djangosecure.check_sts()

	Warns if SECURE_HSTS_SECONDS is not set to a non-zero value.

	
djangosecure.check.djangosecure.check_frame_deny()

	Warns if SECURE_FRAME_DENY is not True.

	
djangosecure.check.djangosecure.check_content_type_nosniff()

	Warns if SECURE_CONTENT_TYPE_NOSNIFF is not True.

	
djangosecure.check.djangosecure.check_ssl_redirect()

	Warns if SECURE_SSL_REDIRECT is not True.

	
djangosecure.check.sessions.check_session_cookie_secure()

	Warns if you appear to be using Django’s session framework [https://docs.djangoproject.com/en/dev/topics/http/sessions/] and the
SESSION_COOKIE_SECURE [https://docs.djangoproject.com/en/dev/topics/http/sessions/#session-cookie-secure] setting is not True. This setting marks
Django’s session cookie as a secure cookie, which instructs browsers not to
send it along with any insecure requests. Since it’s trivial for a packet
sniffer (e.g. Firesheep [http://codebutler.com/firesheep]) to hijack a user’s session if the session cookie
is sent unencrypted, there’s really no good excuse not to have this on. (It
will prevent you from using sessions on insecure requests; that’s a good
thing).

	
djangosecure.check.sessions.check_session_cookie_httponly()

	Warns if you appear to be using Django’s session framework [https://docs.djangoproject.com/en/dev/topics/http/sessions/] and the
SESSION_COOKIE_HTTPONLY [https://docs.djangoproject.com/en/dev/topics/http/sessions/#session-cookie-httponly] setting is not True. This setting marks
Django’s session cookie as “HTTPOnly”, meaning (in supporting browsers) its
value can’t be accessed from client-side scripts. Turning this on makes it
less trivial for an attacker to escalate a cross-site scripting
vulnerability into full hijacking of a user’s session. There’s not much
excuse for leaving this off, either: if your code depends on reading session
cookies from Javascript, you’re probably doing it wrong.

	
djangosecure.check.csrf.check_csrf_middleware()

	Warns if you do not have Django’s built-in CSRF protection [https://docs.djangoproject.com/en/dev/ref/contrib/csrf/] enabled
globally via the CSRF view middleware [https://docs.djangoproject.com/en/dev/ref/contrib/csrf/#how-to-use-it]. It’s important to CSRF protect any
view that modifies server state; if you choose to do that piecemeal via the
csrf_protect [https://docs.djangoproject.com/en/dev/ref/contrib/csrf/#django.views.decorators.csrf.csrf_protect] view decorator instead, just disable this check.

Suggestions for additional built-in checks (or better, patches implementing
them) are welcome!

Modifying the list of check functions

By default, all of the built-in checks are run when
you run ./manage.py checksecure. However, some of these checks may not be
appropriate for your particular deployment configuration. For instance, if you
do your HTTP->HTTPS redirection in a loadbalancer, it’d be irritating for
checksecure to constantly warn you about not having enabled
SECURE_SSL_REDIRECT. You can customize the list of checks by setting the
SECURE_CHECKS setting; you can just copy the default value and remove a
check or two; you can also write your own custom checks.

Writing custom check functions

A checksecure check function can be any Python function that takes no
arguments and returns a Python iterable of warnings (an empty iterable if it
finds nothing to warn about).

Optionally, the function can have a messages attribute, which is a
dictionary mapping short warning codes returned by the function (which will be
displayed by checksecure if run with --verbosity=0) to longer
explanations which will be displayed by checksecure when running at its
default verbosity level. For instance:

from django.conf import settings

def check_dont_let_the_bad_guys_in():
 if settings.LET_THE_BAD_GUYS_IN:
 return ["BAD_GUYS_LET_IN"]
 return []

check_dont_let_the_bad_guys_in.messages = {
 "BAD_GUYS_LET_IN": (
 "Longer explanation of why it's a bad idea to let the bad guys in, "
 "and how to correct the situation.")
}

 Copyright 2011, Carl Meyer.
 Created using Sphinx 1.1.3.

 TEST Brought to you by Read the Docs

 	latest

 	v0.1.2

 	v0.1.1

 	v0.1.0

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	django-secure 0.1.1 documentation

Settings Reference

	SECURE_CHECKS

	SECURE_FRAME_DENY

	SECURE_HSTS_SECONDS

	SECURE_CONTENT_TYPE_NOSNIFF

	SECURE_PROXY_SSL_HEADER

	SECURE_REDIRECT_EXEMPT

	SECURE_SSL_HOST

	SECURE_SSL_REDIRECT

SECURE_CHECKS

A list of strings. Each string should be a Python dotted path to a function
implementing a configuration check that will be run by the checksecure
management command.

Defaults to:

[
 "djangosecure.check.csrf.check_csrf_middleware",
 "djangosecure.check.sessions.check_session_cookie_secure",
 "djangosecure.check.sessions.check_session_cookie_httponly",
 "djangosecure.check.djangosecure.check_security_middleware",
 "djangosecure.check.djangosecure.check_sts",
 "djangosecure.check.djangosecure.check_frame_deny",
 "djangosecure.check.djangosecure.check_content_type_nosniff",
 "djangosecure.check.djangosecure.check_ssl_redirect",
]

SECURE_FRAME_DENY

If set to True, causes SecurityMiddleware to set the X-Frame-Options: DENY
header on all responses that do not already have that header (and where the
view was not decorated with the frame_deny_exempt decorator).

Defaults to False.

SECURE_HSTS_SECONDS

If set to a non-zero integer value, causes SecurityMiddleware to set the
HTTP Strict Transport Security header on all responses that do not
already have that header.

Defaults to 0.

SECURE_CONTENT_TYPE_NOSNIFF

If set to True, causes SecurityMiddleware to set the
X-Content-Type-Options: nosniff header on all responses that do not already
have that header.

Defaults to False.

SECURE_PROXY_SSL_HEADER

In some deployment scenarios, Django’s request.is_secure() method returns
False even on requests that are actually secure, because the HTTPS
connection is made to a front-end loadbalancer or reverse-proxy, and the
internal proxied connection that Django sees is not HTTPS. Usually in these
cases the proxy server provides an alternative header to indicate the secured
external connection. This setting, if set, should be a tuple of (“header”,
“value”); if “header” is set to “value” in request.META, django-secure will
tell Django to consider it a secure request (in other words,
request.is_secure() will return True for this request). The “header”
should be specified in the format it would be found in request.META
(e.g. “HTTP_X_FORWARDED_PROTOCOL”, not “X-Forwarded-Protocol”). For example:

SECURE_PROXY_SSL_HEADER = ("HTTP_X_FORWARDED_PROTOCOL", "https")

Defaults to None.

Warning

If you set this to a header that your proxy allows through from the request
unmodified (i.e. a header that can be spoofed), you are allowing an attacker
to pretend that any request is secure, even if it is not. Make sure you only
use a header that your proxy sets unconditionally, overriding any value from
the request.

SECURE_REDIRECT_EXEMPT

Should be a list of regular expressions. Any URL path matching a regular
expression in this list will not be redirected to HTTPS, if
SECURE_SSL_REDIRECT is True (if it is False this setting has no
effect).

Defaults to [].

SECURE_SSL_HOST

If set to a string (e.g. secure.example.com), all SSL redirects will be
directed to this host rather than the originally-requested host
(e.g. www.example.com). If SECURE_SSL_REDIRECT is False, this
setting has no effect.

Defaults to None.

SECURE_SSL_REDIRECT

If set to True, causes SecurityMiddleware to redirect
all non-HTTPS requests to HTTPS (except for those URLs matching a regular
expression listed in SECURE_REDIRECT_EXEMPT).

Note

If turning this to True causes infinite redirects, it probably means
your site is running behind a proxy and can’t tell which requests are secure
and which are not. Your proxy likely sets a header to indicate secure
requests; you can correct the problem by finding out what that header is and
configuring the SECURE_PROXY_SSL_HEADER setting accordingly.

Defaults to False.

 Copyright 2011, Carl Meyer.
 Created using Sphinx 1.1.3.

 TEST Brought to you by Read the Docs

 	latest

 	v0.1.2

 	v0.1.1

 	v0.1.0

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	django-secure 0.1.1 documentation

CHANGES

0.1.1 (2011.11.23)

	Added the X-Content-Type-Options: nosniff header. Thanks Johannas Heller.

	SECURE_PROXY_SSL_HEADER setting now patches request.is_secure() so it
respects proxied SSL, to avoid redirects to http that should be to https.

0.1.0 (2011.05.29)

	Initial release.

 Copyright 2011, Carl Meyer.
 Created using Sphinx 1.1.3.

 TEST Brought to you by Read the Docs

 	latest

 	v0.1.2

 	v0.1.1

 	v0.1.0

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	django-secure 0.1.1 documentation

TODO

 Copyright 2011, Carl Meyer.
 Created using Sphinx 1.1.3.

 TEST Brought to you by Read the Docs

 	latest

 	v0.1.2

 	v0.1.1

 	v0.1.0

 Navigation

 	
 index

 	
 previous |

 	django-secure 0.1.1 documentation

Contributors

Carl Meyer <carl@oddbird.net>
Johannas Heller <johann@phyfus.com>

 Copyright 2011, Carl Meyer.
 Created using Sphinx 1.1.3.

 TEST Brought to you by Read the Docs

 	latest

 	v0.1.2

 	v0.1.1

 	v0.1.0

 Navigation

 	
 index

 	django-secure 0.1.1 documentation

Index

 C

C

 	

 	check_content_type_nosniff() (in module djangosecure.check.djangosecure)

 	check_csrf_middleware() (in module djangosecure.check.csrf)

 	check_frame_deny() (in module djangosecure.check.djangosecure)

 	check_security_middleware() (in module djangosecure.check.djangosecure)

 	

 	check_session_cookie_httponly() (in module djangosecure.check.sessions)

 	check_session_cookie_secure() (in module djangosecure.check.sessions)

 	check_ssl_redirect() (in module djangosecure.check.djangosecure)

 	check_sts() (in module djangosecure.check.djangosecure)

 Copyright 2011, Carl Meyer.
 Created using Sphinx 1.1.3.

 TEST Brought to you by Read the Docs

 	latest

 	v0.1.2

 	v0.1.1

 	v0.1.0

 _static/minus.png

_static/comment-bright.png

search.html

 Navigation

 		
 index

 		django-secure 0.1.1 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2011, Carl Meyer.
 Created using Sphinx 1.1.3.

 TEST Brought to you by Read the Docs

 		latest

 		v0.1.2

 		v0.1.1

 		v0.1.0

_static/comment-close.png

_static/up-pressed.png

_static/up.png

_static/down.png

_static/plus.png

_static/comment.png

_static/ajax-loader.gif

_static/file.png

_static/down-pressed.png

