
django-secure Documentation
Release 0.1.1

Carl Meyer

September 12, 2012

CONTENTS

i

ii

django-secure Documentation, Release 0.1.1

Helping you remember to do the stupid little things to improve your Django site’s security.

Inspired by Mozilla’s Secure Coding Guidelines, and intended for sites that are entirely or mostly served over SSL
(which should include anything with user logins).

CONTENTS 1

https://wiki.mozilla.org/WebAppSec/Secure_Coding_Guidelines

django-secure Documentation, Release 0.1.1

2 CONTENTS

CHAPTER

ONE

QUICKSTART

1.1 Dependencies

Tested with Django 1.2 through trunk, and Python 2.5 through 2.7. Quite likely works with older versions of both,
though; it’s not very complicated.

1.2 Installation

Install from PyPI with pip:

pip install django-secure

or get the in-development version:

pip install django-secure==dev

1.3 Usage

• Add "djangosecure" to your INSTALLED_APPS setting.

• Add "djangosecure.middleware.SecurityMiddleware" to your MIDDLEWARE_CLASSES set-
ting (where depends on your other middlewares, but near the beginning of the list is probably a good choice).

• Set the SECURE_SSL_REDIRECT setting to True if all non-SSL requests should be permanently redirected
to SSL.

• Set the SECURE_HSTS_SECONDS setting to an integer number of seconds, if you want to use HTTP Strict
Transport Security.

• Set the SECURE_FRAME_DENY setting to True, if you want to prevent framing of your pages and protect
them from clickjacking.

• Set the SECURE_CONTENT_TYPE_NOSNIFF setting to True, if you want to prevent the browser from guess-
ing asset content types.

• Set SESSION_COOKIE_SECURE and SESSION_COOKIE_HTTPONLY to True if you are using
django.contrib.sessions. These settings are not part of django-secure, but they should be used
if running a secure site, and the checksecure management command will check their values.

• Run python manage.py checksecure to verify that your settings are properly configured for serving a
secure SSL site.

3

http://www.djangoproject.com/
http://www.python.org/
https://github.com/carljm/django-secure/tarball/master#egg=django_secure-dev
http://en.wikipedia.org/wiki/Strict_Transport_Security
http://en.wikipedia.org/wiki/Strict_Transport_Security
http://www.sectheory.com/clickjacking.htm

django-secure Documentation, Release 0.1.1

Warning: If checksecure gives you the all-clear, all it means is that you’re now taking advantage of a tiny
selection of simple and easy security wins. That’s great, but it doesn’t mean your site or your codebase is secure:
only a competent security audit can tell you that.

4 Chapter 1. Quickstart

CHAPTER

TWO

THE DETAILS

2.1 Design Goals

Django-secure does not make your site secure. It does not audit code, or do intrusion detection, or really do anything
particularly interesting or complicated.

Django-secure is an automated low-hanging-fruit checklist. Django-secure helps you remember the stupid simple
things that improve your site’s security, reminds you to do those easy things, and makes them as easy as possible to
do.

2.2 SecurityMiddleware

The djangosecure.middleware.SecurityMiddleware performs three different tasks for you. Each one
can be independently enabled or disabled with a setting.

• X-Frame-Options: DENY
• HTTP Strict Transport Security
• X-Content-Type-Options: nosniff
• SSL Redirect

2.2.1 X-Frame-Options: DENY

Clickjacking attacks use layered frames to mislead users into clicking on a different link from the one they think
they are clicking on. Fortunately, newer browsers support an X-Frame-Options header that allows you to limit
or prevent the display of your pages within a frame. Valid options are “DENY” or “SAMEORIGIN” - the former
prevents all framing of your site, and the latter allows only sites within the same domain to frame.

Unless you have a need for frames, your best bet is to set “X-Frame-Options: DENY” – and this is what
SecurityMiddleware will do for all responses, if the SECURE_FRAME_DENY setting is True.

If you have a few pages that should be frame-able, you can set the “X-Frame-Options” header on the response to
“SAMEORIGIN” in the view; SecurityMiddleware will not override an already-present “X-Frame-Options”
header. If you don’t want the “X-Frame-Options” header on this view’s response at all, decorate the view with the
frame_deny_exempt decorator:

from djangosecure.decorators import frame_deny_exempt

@frame_deny_exempt

5

http://www.sectheory.com/clickjacking.htm

django-secure Documentation, Release 0.1.1

def my_view(request):
...

2.2.2 HTTP Strict Transport Security

For sites that should only be accessed over HTTPS, you can instruct newer browsers to refuse to connect to your
domain name via an insecure connection (for a given period of time) by setting the “Strict-Transport-Security” header.
This reduces your exposure to some SSL-stripping man-in-the-middle (MITM) attacks.

SecurityMiddleware will set this header for you on all HTTPS responses if you set the SE-
CURE_HSTS_SECONDS setting to a nonzero integer value.

Warning: The HSTS policy applies to your entire domain, not just the URL of the response that you set the
header on. Therefore, you should only use it if your entire domain is served via HTTPS only.

Warning: Browsers properly respecting the HSTS header will refuse to allow users to bypass warnings and
connect to a site with an expired, self-signed, or otherwise invalid SSL certificate. If you use HSTS, make sure
your certificates are in good shape and stay that way!

Note: If you are deployed behind a load-balancer or reverse-proxy server, and the Strict-Transport-Security header
is not being added to your responses, it may be because Django doesn’t realize when it’s on a secure connection; you
may need to set the SECURE_PROXY_SSL_HEADER setting.

2.2.3 X-Content-Type-Options: nosniff

Some browsers will try to guess the content types of the assets that they fetch, overriding the Content-Type header.
While this can help display sites with improperly configured servers, it can also pose a security risk.

If your site serves user-uploaded files, a malicious user could upload a specially-crafted file that would be interpreted
as HTML or Javascript by the browser when you expected it to be something harmless.

To learn more about this header and how the browser treats it, you can read about it on the IE Security Blog.

To prevent the browser from guessing the content type, and force it to always use the type pro-
vided in the Content-Type header, you can pass the X-Content-Type-Options: nosniff header.
SecurityMiddleware will do this for all responses if the SECURE_CONTENT_TYPE_NOSNIFF setting is
True.

2.2.4 SSL Redirect

If your site offers both HTTP and HTTPS connections, most users will end up with an unsecured connection by default.
For best security, you should redirect all HTTP connections to HTTPS.

If you set the SECURE_SSL_REDIRECT setting to True, SecurityMiddleware will permanently (HTTP 301)
redirect all HTTP connections to HTTPS.

Note: For performance reasons, it’s preferable to do these redirects outside of Django, in a front-end loadbalancer or
reverse-proxy server such as nginx. In some deployment situations this isn’t an option - SECURE_SSL_REDIRECT is
intended for those cases.

6 Chapter 2. The Details

http://en.wikipedia.org/wiki/Strict_Transport_Security
http://blogs.msdn.com/b/ie/archive/2008/09/02/ie8-security-part-vi-beta-2-update.aspx
http://nginx.org

django-secure Documentation, Release 0.1.1

If the SECURE_SSL_HOST setting has a value, all redirects will be sent to that host instead of the originally-requested
host.

If there are a few pages on your site that should be available over HTTP, and not redirected to HTTPS, you can list
regular expressions to match those URLs in the SECURE_REDIRECT_EXEMPT setting.

Note: If you are deployed behind a load-balancer or reverse-proxy server, and Django can’t seem to tell when a
request actually is already secure, you may need to set the SECURE_PROXY_SSL_HEADER setting.

2.3 The checksecure management command

The checksecure management command is a “linter” for simple improvements you could make to your site’s
security configuration. It just runs a list of check functions. Each check function can return a set of warnings, or the
empty set if it finds nothing to warn about.

• When to run it
• Built-in checks
• Modifying the list of check functions
• Writing custom check functions

2.3.1 When to run it

You can run it in your local development checkout. Your local dev settings module may not be configured for SSL,
so you may want to point it at a different settings module, either by setting the DJANGO_SETTINGS_MODULE
environment variable, or by passing the --settings option:

django-admin.py checksecure --settings=production_settings

Or you could run it directly on a production or staging deployment to verify that the correct settings are in use.

You could even make it part of your integration test suite, if you want. The
djangosecure.check.run_checks() function runs all configured checks and returns the complete set
of warnings; you could write a simple test that asserts that the returned value is empty.

2.3.2 Built-in checks

The following check functions are built-in to django-secure, and will run by default:

djangosecure.check.djangosecure.check_security_middleware()
Warns if SecurityMiddleware is not in your MIDDLEWARE_CLASSES.

djangosecure.check.djangosecure.check_sts()
Warns if SECURE_HSTS_SECONDS is not set to a non-zero value.

djangosecure.check.djangosecure.check_frame_deny()
Warns if SECURE_FRAME_DENY is not True.

djangosecure.check.djangosecure.check_content_type_nosniff()
Warns if SECURE_CONTENT_TYPE_NOSNIFF is not True.

djangosecure.check.djangosecure.check_ssl_redirect()
Warns if SECURE_SSL_REDIRECT is not True.

2.3. The checksecure management command 7

django-secure Documentation, Release 0.1.1

djangosecure.check.sessions.check_session_cookie_secure()
Warns if you appear to be using Django’s session framework and the SESSION_COOKIE_SECURE setting is
not True. This setting marks Django’s session cookie as a secure cookie, which instructs browsers not to send it
along with any insecure requests. Since it’s trivial for a packet sniffer (e.g. Firesheep) to hijack a user’s session
if the session cookie is sent unencrypted, there’s really no good excuse not to have this on. (It will prevent you
from using sessions on insecure requests; that’s a good thing).

djangosecure.check.sessions.check_session_cookie_httponly()
Warns if you appear to be using Django’s session framework and the SESSION_COOKIE_HTTPONLY setting
is not True. This setting marks Django’s session cookie as “HTTPOnly”, meaning (in supporting browsers) its
value can’t be accessed from client-side scripts. Turning this on makes it less trivial for an attacker to escalate a
cross-site scripting vulnerability into full hijacking of a user’s session. There’s not much excuse for leaving this
off, either: if your code depends on reading session cookies from Javascript, you’re probably doing it wrong.

djangosecure.check.csrf.check_csrf_middleware()
Warns if you do not have Django’s built-in CSRF protection enabled globally via the CSRF view middleware.
It’s important to CSRF protect any view that modifies server state; if you choose to do that piecemeal via the
csrf_protect view decorator instead, just disable this check.

Suggestions for additional built-in checks (or better, patches implementing them) are welcome!

2.3.3 Modifying the list of check functions

By default, all of the built-in checks are run when you run ./manage.py checksecure. However, some of these
checks may not be appropriate for your particular deployment configuration. For instance, if you do your HTTP-
>HTTPS redirection in a loadbalancer, it’d be irritating for checksecure to constantly warn you about not having
enabled SECURE_SSL_REDIRECT . You can customize the list of checks by setting the SECURE_CHECKS setting;
you can just copy the default value and remove a check or two; you can also write your own custom checks.

2.3.4 Writing custom check functions

A checksecure check function can be any Python function that takes no arguments and returns a Python iterable
of warnings (an empty iterable if it finds nothing to warn about).

Optionally, the function can have a messages attribute, which is a dictionary mapping short warning codes returned
by the function (which will be displayed by checksecure if run with --verbosity=0) to longer explanations
which will be displayed by checksecure when running at its default verbosity level. For instance:

from django.conf import settings

def check_dont_let_the_bad_guys_in():
if settings.LET_THE_BAD_GUYS_IN:

return ["BAD_GUYS_LET_IN"]
return []

check_dont_let_the_bad_guys_in.messages = {
"BAD_GUYS_LET_IN": (

"Longer explanation of why it’s a bad idea to let the bad guys in, "
"and how to correct the situation.")

}

2.4 Settings Reference

8 Chapter 2. The Details

https://docs.djangoproject.com/en/dev/topics/http/sessions/
https://docs.djangoproject.com/en/dev/topics/http/sessions/#session-cookie-secure
http://codebutler.com/firesheep
https://docs.djangoproject.com/en/dev/topics/http/sessions/
https://docs.djangoproject.com/en/dev/topics/http/sessions/#session-cookie-httponly
https://docs.djangoproject.com/en/dev/ref/contrib/csrf/
https://docs.djangoproject.com/en/dev/ref/contrib/csrf/#how-to-use-it
https://docs.djangoproject.com/en/dev/ref/contrib/csrf/#django.views.decorators.csrf.csrf_protect

django-secure Documentation, Release 0.1.1

• SECURE_CHECKS
• SECURE_FRAME_DENY
• SECURE_HSTS_SECONDS
• SECURE_CONTENT_TYPE_NOSNIFF
• SECURE_PROXY_SSL_HEADER
• SECURE_REDIRECT_EXEMPT
• SECURE_SSL_HOST
• SECURE_SSL_REDIRECT

2.4.1 SECURE_CHECKS

A list of strings. Each string should be a Python dotted path to a function implementing a configuration check that will
be run by the checksecure management command.

Defaults to:

[
"djangosecure.check.csrf.check_csrf_middleware",
"djangosecure.check.sessions.check_session_cookie_secure",
"djangosecure.check.sessions.check_session_cookie_httponly",
"djangosecure.check.djangosecure.check_security_middleware",
"djangosecure.check.djangosecure.check_sts",
"djangosecure.check.djangosecure.check_frame_deny",
"djangosecure.check.djangosecure.check_content_type_nosniff",
"djangosecure.check.djangosecure.check_ssl_redirect",

]

2.4.2 SECURE_FRAME_DENY

If set to True, causes SecurityMiddleware to set the X-Frame-Options: DENY header on all responses that do not
already have that header (and where the view was not decorated with the frame_deny_exempt decorator).

Defaults to False.

2.4.3 SECURE_HSTS_SECONDS

If set to a non-zero integer value, causes SecurityMiddleware to set the HTTP Strict Transport Security header on all
responses that do not already have that header.

Defaults to 0.

2.4.4 SECURE_CONTENT_TYPE_NOSNIFF

If set to True, causes SecurityMiddleware to set the X-Content-Type-Options: nosniff header on all responses that do
not already have that header.

Defaults to False.

2.4. Settings Reference 9

django-secure Documentation, Release 0.1.1

2.4.5 SECURE_PROXY_SSL_HEADER

In some deployment scenarios, Django’s request.is_secure()method returns False even on requests that are
actually secure, because the HTTPS connection is made to a front-end loadbalancer or reverse-proxy, and the internal
proxied connection that Django sees is not HTTPS. Usually in these cases the proxy server provides an alternative
header to indicate the secured external connection. This setting, if set, should be a tuple of (“header”, “value”); if
“header” is set to “value” in request.META, django-secure will tell Django to consider it a secure request (in other
words, request.is_secure() will return True for this request). The “header” should be specified in the format
it would be found in request.META (e.g. “HTTP_X_FORWARDED_PROTOCOL”, not “X-Forwarded-Protocol”).
For example:

SECURE_PROXY_SSL_HEADER = ("HTTP_X_FORWARDED_PROTOCOL", "https")

Defaults to None.

Warning: If you set this to a header that your proxy allows through from the request unmodified (i.e. a header
that can be spoofed), you are allowing an attacker to pretend that any request is secure, even if it is not. Make sure
you only use a header that your proxy sets unconditionally, overriding any value from the request.

2.4.6 SECURE_REDIRECT_EXEMPT

Should be a list of regular expressions. Any URL path matching a regular expression in this list will not be redirected
to HTTPS, if SECURE_SSL_REDIRECT is True (if it is False this setting has no effect).

Defaults to [].

2.4.7 SECURE_SSL_HOST

If set to a string (e.g. secure.example.com), all SSL redirects will be directed to this host rather than the
originally-requested host (e.g. www.example.com). If SECURE_SSL_REDIRECT is False, this setting has no
effect.

Defaults to None.

2.4.8 SECURE_SSL_REDIRECT

If set to True, causes SecurityMiddleware to redirect all non-HTTPS requests to HTTPS (except for those URLs
matching a regular expression listed in SECURE_REDIRECT_EXEMPT).

Note: If turning this to True causes infinite redirects, it probably means your site is running behind a proxy and can’t
tell which requests are secure and which are not. Your proxy likely sets a header to indicate secure requests; you can
correct the problem by finding out what that header is and configuring the SECURE_PROXY_SSL_HEADER setting
accordingly.

Defaults to False.

10 Chapter 2. The Details

django-secure Documentation, Release 0.1.1

2.5 CHANGES

2.5.1 0.1.1 (2011.11.23)

• Added the X-Content-Type-Options: nosniff header. Thanks Johannas Heller.

• SECURE_PROXY_SSL_HEADER setting now patches request.is_secure() so it respects proxied SSL,
to avoid redirects to http that should be to https.

2.5.2 0.1.0 (2011.05.29)

• Initial release.

2.6 TODO

2.7 Contributors

Carl Meyer <carl@oddbird.net> Johannas Heller <johann@phyfus.com>

2.5. CHANGES 11

mailto:carl@oddbird.net
mailto:johann@phyfus.com

django-secure Documentation, Release 0.1.1

12 Chapter 2. The Details

CHAPTER

THREE

INDICES AND TABLES

• genindex

• modindex

• search

13

